
Java Crash Course
Part I

Institut für Wirtschaftsinformatik
HU-Berlin WS 2004

Sebastian Kolbe
skolbe@wiwi.hu-berlin.de

Overview

 (Short) introduction to the environment
 Linux in the computer lab

 Getting started with Java
 Your first Java-application
 Programming elements

 Variables
 Operators
 Predefined functions

Environment

 Linux or MS-Windows
 In Room 025 only Linux!

 All exercises and homework in this course must
be runnable under Linux

 For the exercises you will need
 Editor (e.g. emacs)
 System shell
 JDK
 Web browser (e.g. Konquerer or Firefox)

(->later)

Java

 Platform independent
 Widely known
 Industrial standard
 Easy to learn
 Object orientated

Your first Java application
 Simple displays “Hallo Welt!”
 To create the program, you have to

 Write a java sourcefile
e.g. HelloWorld.java

 Compile this sourcefile to a bytecode file
e.g. HelloWorld.class

 Run the program with the Java-interpreter

/*
 * The HelloWorld class implements an application that
 * simply displays "Hello World!" to the standard output.
 */

class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hallo Welt!"); // Display the string
 }
}

HelloWorld in detail

/*
 * The HelloWorld class implements an application that
 * simply displays "Hello World!" to the standard output.
 */

class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hallo Welt!"); // Display the string
 }
}

A comment:
Everything between /* and */ will be ignored
by the compiler.
Comments are not important for computers
but for humans!

Class declaration:
Everything in Java is organized in classes.
(Small logical unit which defines a set of
variables and methods(routines))
By convention you declare one class per file
and name that file the same.

Single line comment:
Everything after // will be
ignored by the compiler

Output:
Write some characters Hallo Welt!
on the screen

The main method / routine:
Every program need one 'main' routine, where it
starts to perform instructions.
At this time take the syntax as a fixed statement!

Brackets and parenthesis:
Every logical statement must be started and
ended with curly brackets!
Arguments to methods/functions/routines always
uses parenthesis. Arguments are separated with
commas.
Be aware of case sensitiveness and the
semicolon at the end of instructions!

Your first Java application

 The Java compiler javac
 Translates the sourcecode into instructions that

the Java Virtual Machine (Java VM) can
understand (bytecode)

 Produces .class files from .java files

sko@dussel:/home/sko > javac HelloWorld.java
sko@dussel:/home/sko >

Your first Java application

 The Java Virtual Machine (Java VM)
 Is implemented by the Java interpreter java
 Can understand bytecode files (.class) and

executes them in a way your local computer can
understand

sko@dussel:/home/sko > java HelloWorld
Hallo Welt!
sko@dussel:/home/sko >

Variables

 The smallest item of a program
 Can store data
 Each variable has:

 Type (what kind of data, e.g. int or String)
 Identifier (a name)
 Scope (characteristic that regularize access)

(see lectures)

Variables

 Declaration:
int i;
double epsilon;
String greeting;

 Initialization:
i = 3;
epsilon = 0.02;
greeting = “Hallo Welt!”;
int j = 4; // combined!

 Using:
i = i + j;

Primitive data types

Name
-128 – 127

-32768 – 32767
Integer
Long integer

double

String

Description Value
byte Byte-length integer
short Short integer
int -232 – 232-1
long -264 – 264-1
float Single-precision floating point 2-149 – (2-223)*2127

Double-precision floating point 2-1074 – (2-252)*21023

char One character 1 unicode char.
boolean Logical value (true or false) true/false

Text (a string of characters)

* String is not really a primitive data type, but can
 be used as one

Operators

Operator Use Description
+ Op1 + Op2 Add Op1 and Op2
- Op1 – Op2 Substract Op1 from Op2
* Op1 * Op2 Multiply Op1 with Op2
/ Op1 / Op2 Divides Op1 by Op2

++ Op1 ++ Adds 1 to Op1
-- Op1 -- Substracts 1 from Op1
% Op1 % Op2 Computes div remainder
< Op1 > Op2 Op1 is less than Op2
> Op2 > Op2 Op1 is greater than Op2

>= Op1 >= Op2 Op1 is greater than or equal Op2
<= Op1 <= Op2 Op1 is less than or equal Op2
 == Op1 == Op2 Op1 is equal Op2
!= Op1 != Op2 Op1 is not equal Op2
|| Op1 || Op2 Op1 or Op2

&& Op1 && Op2 Op1 and Op2
! !Op1 Negates Op1

Predefined functions

 In Java exists a huge database of
predefined routines and functions
organized in hierarchic libraries

 Simple Output
 Use single routines with full path

java.lang.System.out.println(“Hallo Welt!”);

 Prefix “java.lang” is omittable

Example

{

int i = 7;

double pi = 3.14159;

System.out.println("Hello World!");

System.out.println("PI=" + pi);

System.out.println("i+pi=" + (pi + i));

}

Output:
Hello World!
PI=3.14159
i+pi=10.14159

