Java Crash Course
Part |

Institut fur Wirtschaftsinformatik
HU-Berlin WS 2004

Sebastian Kolbe
skolbe@wiwi.hu-berlin.de

Overview

¢ (Short) introduction to the environment
¢ Linux in the computer lab

¢ Getting started with Java

¢ Your first Java-application

¢ Programming elements
¢ Variables
¢ Operators
¢ Predefined functions

Environment

¢ Linux or MS-Windows

¢ |In Room 025 only Linux!
¢ All exercises and homework in this course must
be runnable under Linux

¢ For the exercises you will need
¢ Editor (e.g. emacs)
¢ System shell
¢ JDK
¢ \Web browser (e.g. Konquerer or Firefox)
(->later)

Java

¢ Platform independent
¢ Widely known

¢ |ndustrial standard

¢ Easy to learn

¢ Object orientated

Your first Java application

¢ Simple displays “Hallo Welt!”

¢ o create the program, you have to
¢ Write a java sourcefile
e.g. Hel | oWorl d. j ava

¢ Compile this sourcefile to a bytecode file
e.g. Hel | oWor 1 d. cl ass

¢ Run the program with the Java-interpreter

/*
* The Hell oWworl d class i1 nplenents an application that

* simply displays "Hello World!'" to the standard out put.
*/

class Hell oWworl d {
public static void main(String[] args) {

System out. printl n(); // Display the string
}
}

HelloWorld in detail

Class declaration:

Everything in Java is organized in classes.
(Small logical unit which defines a set of
variables and methods(routines))

By convention you declare one class per file
and name that file the same.

A comment:

Everything between /* and */ will be ignored
by the compiler.

Comments are not important for computers
but for humans!

*

*/
class Hell oWworl d {

¢ Systemout.println(

- \

public static void main(String[]

)

)

y

* The Hel |l oWworl d class i nplenents an application that Single line comment:
* sinply displays "Hello Wrld!" to the standard out put. Everything after // will be

ignored by the compiler

{ /

/1l Display the string

Output:

on the screen

Write some characters Hal | o Wel t!

|

The main method / routine;

starts to perform instructions.

Every program need one 'main’ routine, where it

At this time take the syntax as a fixed statement!

Brackets and parenthesis:

Every logical statement must be started and
ended with curly brackets!

Arguments to methods/functions/routines always
uses parenthesis. Arguments are separated with
commas.

Be aware of case sensitiveness and the
semicolon at the end of instructions!

Your first Java application

¢ The Java compiler | avac

¢ Translates the sourcecode into instructions that
the Java Virtual Machine (Java VM) can
understand (bytecode)

¢ Produces . cl ass files from . | ava files

sko@lussel : / hone/ sko > javac Hel |l oWwrl d. | ava
sko@lussel : / hone/ sko >

Your first Java application

¢ The Java Virtual Machine (Java VM)
¢ Is implemented by the Java interpreter | ava
¢ Can understand bytecode files (. cl ass) and

executes them in a way your local computer can
understand

sko@lussel : / hone/ sko > java Hell oWrl d
Hal | o Wl t!
sko@lussel : / hone/ sko >

Variables

¢ The smallest item of a program
¢ Can store data

¢ Each variable has:
¢ Type (what kind of data, e.qg. int or String)
¢ |dentifier (a name)
¢ Scope (characteristic that regularize access)
(see lectures)

Variables

¢ Declaration:
Int 1
doubl e epsi |l on;
String greeting;

¢ |nitialization:
| = 3;
epsilon = 0.02;

greeting = “Hallo Welt!”;
int | = 4; /] conmbi ned!

¢ Using:

I =1 + J;

Primitive data types

Name Description Value

byt e Byte-length integer -128 — 127
short Short integer -32768 — 32767
| nt Integer -2%2 — 2321

| ong Long integer 204 — 2641
fl oat Single-precision floating point 27149 — (2-2%)*217
doubl e Double-precision floating point 271074 — (2-2°2)*21023
char One character 1 unicode char.
bool ean Logical value (true or false) true/false

String Text (a string of characters)

* String is not really a primitive data type, but can
be used as one

Operators

Operator

Use

Description

+

*

/

Op1 + Op2
Op1 - 0p2
Op1 * Op2
Op1/0Op2
Op1 ++
Op1 --
Op1 % Op2

Add Op1 and Op2
Substract Op1 from Op2
Multiply Op1 with Op2
Divides Op1 by Op2
Adds 1 to Op1
Substracts 1 from Op1
Computes div remainder

Op1 > Op2
Op2 > Op2
Op1 >= Op2
Op1 <= Op2
Op1 == Op2
Op1 = Op2
Op1 || Op2
Op1 && Op2
10p1

Op1 is less than Op2

Op1 is greater than Op2

Op1 is greater than or equal Op2
Op1 is less than or equal Op2
Op1 is equal Op2

Op1 is not equal Op2

Op1 or Op2

Op1 and Op2

Negates Op1

Predefined functions

¢ |In Java exists a huge database of
predefined routines and functions
organized in hierarchic libraries

¢ Simple Output
¢ Use single routines with full path

java.lang. Systemout.printin(“Hallo Welt!”);

¢ Prefix “java.lang” is omittable

I nt |
doubl e pi = 3.14159;
Systemout.printin("Hello World!");

Systemout.printin("Pl=" + pi);
Systemout.println("i+pi=" + (pi + i));

Hel | o Worl d!
Pl =3. 14159
| +pi =10. 14159

