
Java Crash Course
Part I

Institut für Wirtschaftsinformatik
HU-Berlin WS 2004

Sebastian Kolbe
skolbe@wiwi.hu-berlin.de

Overview

 (Short) introduction to the environment
 Linux in the computer lab

 Getting started with Java
 Your first Java-application
 Programming elements

 Variables
 Operators
 Predefined functions

Environment

 Linux or MS-Windows
 In Room 025 only Linux!

 All exercises and homework in this course must
be runnable under Linux

 For the exercises you will need
 Editor (e.g. emacs)
 System shell
 JDK
 Web browser (e.g. Konquerer or Firefox)

(->later)

Java

 Platform independent
 Widely known
 Industrial standard
 Easy to learn
 Object orientated

Your first Java application
 Simple displays “Hallo Welt!”
 To create the program, you have to

 Write a java sourcefile
e.g. HelloWorld.java

 Compile this sourcefile to a bytecode file
e.g. HelloWorld.class

 Run the program with the Java-interpreter

/*
 * The HelloWorld class implements an application that
 * simply displays "Hello World!" to the standard output.
 */

class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hallo Welt!"); // Display the string
 }
}

HelloWorld in detail

/*
 * The HelloWorld class implements an application that
 * simply displays "Hello World!" to the standard output.
 */

class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hallo Welt!"); // Display the string
 }
}

A comment:
Everything between /* and */ will be ignored
by the compiler.
Comments are not important for computers
but for humans!

Class declaration:
Everything in Java is organized in classes.
(Small logical unit which defines a set of
variables and methods(routines))
By convention you declare one class per file
and name that file the same.

Single line comment:
Everything after // will be
ignored by the compiler

Output:
Write some characters Hallo Welt!
on the screen

The main method / routine:
Every program need one 'main' routine, where it
starts to perform instructions.
At this time take the syntax as a fixed statement!

Brackets and parenthesis:
Every logical statement must be started and
ended with curly brackets!
Arguments to methods/functions/routines always
uses parenthesis. Arguments are separated with
commas.
Be aware of case sensitiveness and the
semicolon at the end of instructions!

Your first Java application

 The Java compiler javac
 Translates the sourcecode into instructions that

the Java Virtual Machine (Java VM) can
understand (bytecode)

 Produces .class files from .java files

sko@dussel:/home/sko > javac HelloWorld.java
sko@dussel:/home/sko >

Your first Java application

 The Java Virtual Machine (Java VM)
 Is implemented by the Java interpreter java
 Can understand bytecode files (.class) and

executes them in a way your local computer can
understand

sko@dussel:/home/sko > java HelloWorld
Hallo Welt!
sko@dussel:/home/sko >

Variables

 The smallest item of a program
 Can store data
 Each variable has:

 Type (what kind of data, e.g. int or String)
 Identifier (a name)
 Scope (characteristic that regularize access)

(see lectures)

Variables

 Declaration:
int i;
double epsilon;
String greeting;

 Initialization:
i = 3;
epsilon = 0.02;
greeting = “Hallo Welt!”;
int j = 4; // combined!

 Using:
i = i + j;

Primitive data types

Name
-128 – 127

-32768 – 32767
Integer
Long integer

double

String

Description Value
byte Byte-length integer
short Short integer
int -232 – 232-1
long -264 – 264-1
float Single-precision floating point 2-149 – (2-223)*2127

Double-precision floating point 2-1074 – (2-252)*21023

char One character 1 unicode char.
boolean Logical value (true or false) true/false

Text (a string of characters)

* String is not really a primitive data type, but can
 be used as one

Operators

Operator Use Description
+ Op1 + Op2 Add Op1 and Op2
- Op1 – Op2 Substract Op1 from Op2
* Op1 * Op2 Multiply Op1 with Op2
/ Op1 / Op2 Divides Op1 by Op2

++ Op1 ++ Adds 1 to Op1
-- Op1 -- Substracts 1 from Op1
% Op1 % Op2 Computes div remainder
< Op1 > Op2 Op1 is less than Op2
> Op2 > Op2 Op1 is greater than Op2

>= Op1 >= Op2 Op1 is greater than or equal Op2
<= Op1 <= Op2 Op1 is less than or equal Op2
 == Op1 == Op2 Op1 is equal Op2
!= Op1 != Op2 Op1 is not equal Op2
|| Op1 || Op2 Op1 or Op2

&& Op1 && Op2 Op1 and Op2
! !Op1 Negates Op1

Predefined functions

 In Java exists a huge database of
predefined routines and functions
organized in hierarchic libraries

 Simple Output
 Use single routines with full path

java.lang.System.out.println(“Hallo Welt!”);

 Prefix “java.lang” is omittable

Example

{

int i = 7;

double pi = 3.14159;

System.out.println("Hello World!");

System.out.println("PI=" + pi);

System.out.println("i+pi=" + (pi + i));

}

Output:
Hello World!
PI=3.14159
i+pi=10.14159

