
Java Crash Course
Part II

School of Business and Economics
Institute of Information Systems

HU-Berlin WS 2005

Sebastian Kolbe
skolbe@wiwi.hu-berlin.de

Overview

 Repetition
 Control structures in Java
 About classes and objects

 General concept
 Implementation in Java

What you already should know

 How to log in, compile and start a
Java application in the computer lab

 Java-Syntax
 Variables and data types
 Operators
 Simple output of data

Control structures

 Control structures are for controlling the
“program flow”. With these structures you
can selectively execute program code based
on some criteria or use the same code more
than one time.

 Selective execution
 If ... then ... else

 Loops
 for
 while
 do

If/then/else
 Syntax (formal)

 if (boolean expression) statement(s)
 if (boolean expression) statement(s) else statement(s)

 Example in Java
{

int i = 3;
int j = 4;
if (i < j) {

System.out.println (“i is less than j!”);
}
else {

System.out.println (“i is more than or equal to j!”);
}

}

Loops
 Repeating and reusing directives in program

 for (initialization ; termination ; increment) statement(s)

 while (boolean expression) statement(s)

 do statement(s) while (expression)

for (int i = 0; i < 5; i++) {

System.out.println(“i = “ + i);

}

int i = 0;

while (i < 5) {

System.out.println(“i = “ + i);

i++;

}

int i = 0;

do {
System.out.println(“i = “ + i);

i++;

} while (i < 5);

Summation Calculator
/* This calculates the summation of a given integer
 * result = 1 + 2 + 3 + ... + number
 * = n * (n+1) * 0.5 (Gauss sum)
 */

class SumClass {
 public static void main(String [] args) {
 // at first we declare some variables
 int number = 5; // the input number
 int i = 1; // "running" variable
 int result = 0; // the output

 while (i <= number) {
result = result + i;
i++;

 }
 System.out.println("The gauss summation of " +

 number + " is " + result);
 }
}

About classes and objects

 Understand classes as an prototype
abstraction of a real world thing

 Classes defines behavior and capabilities
common to all objects of a certain kind

 The concept of classes are pure virtual!
Like a blueprint or schematic diagram

 An object is a instance of a class
 Realization (or building) of an arcticle

based on a blueprint
 Objects have capabilities (defined in class)

and a state

Example: A Car
 The idea:

 A vehicle for moving fast, comfortable, ...
 Usable for transport, traveling, ...
 Nice “looking”

 After 150 years of invention:

Example: A (virtual) Car

 The schematic design determines:
 Properties (transport capacity, design, velocity, ...)
 Behavioral Possibilities (Oil temperature display,

headlight on/off, breaks, ...)

 But what is not determined?
 Color
 Cargo
 Configuration
 ...

Example: A (real) Car

Now build a “real” car from blueprint

Example: A (real) Car

 The “real” car:
 Has all capabilities and behaviors from scheme
 Additional states:

 Characteristics (persistent state):
(color, configuration of seats, roof, etc.)

 Transient state:
(fuel, water, clean/dirty, broken, in use, lights on/off, ...)

 From a users point of view
 The car only “shows” its “user-interface” (steering wheel,

lamps, knobs, buttons, ...) other functions are hidden!
 The internal function of a car is mostly unknown to the driver

(opaque design, encapsulation)

OOP
 Back to classes and objects:

 A class can be understood as abstract view of an
article/thing (a blueprint or schematic diagram)
In IT: a module of a computer program that has a
specific, separated functionality

 An object is the article/thing itself built on the ba-
sis of a class.
For every object a corresponding class exists!
But you can have/create any number of objects
from a given class

 An object is also called an instance of a class

Classes in Java

 Keyword: class
 Behavior and capabilities are expressed by

variables and methods

class Name {
 // declare variables

 // Constructor(s), for object creation

 // Method(s)

}

public class Calculator {

 private int result;

 Calculator ()
{

result = 0;
}

 public int sum(int a, int b)
{
 result = a + b;

 return(result);
}

}

Classes in Java

 Variables
 <modifiers> datatyp name
 public String myname;

 Methods
 <modifiers> datatyp name (Argumentlist)
 private int getResult(int arg1, double arg2);
 Contains statements and variables
 Like a mathematical function
 More than one method with the same name is possible,

when using different argumentlist
 Variables defined inside and noted in arguments are only

locally available and usable

Modifiers

 static
 Methods: Method can be called without creating

an instance (object) of the class [-> main-method]
 Variables: Variable can be used without initializa-

tion and contains the same value in all objects

 private, protected, public
 Access rules for methods, variables and classes

Specialized methods

 main
 always a static method
 the beginning of the program

 Constructor
 creates (constructes) objects from classes
 no return value (returns an object)
 Call with the new operator

FactorialEnhanced facCalculator = new FactorialEnhanced(number);

Remember the syntax for arrays?

Conventions

 Classes have the same name as file
 Class-names begin with an uppercase letter
 Method-names begin with a lowercase letter
 Variable-names begin with a lowercase letter
 Constructors always use the same name as

the class

 Use comments and indentation!!!

Homework
 Calculate the faculty (n!) of a number given

on command line

 Extend your program that it creates an in-
stance of a class and uses it

/* Code Example */
public class MyFacultyCalc {

// ...
public static void main (String[] args) {

MyFacultyCalc mfc = new MyFacultyCalc();
// ...

}
}

> java MyFacultyCalc 10
3628800
>

