
Java Crash Course
Part II

School of Business and Economics
Institute of Information Systems

HU-Berlin WS 2005

Sebastian Kolbe
skolbe@wiwi.hu-berlin.de

Overview

 Repetition
 Control structures in Java
 About classes and objects

 General concept
 Implementation in Java

What you already should know

 How to log in, compile and start a
Java application in the computer lab

 Java-Syntax
 Variables and data types
 Operators
 Simple output of data

Control structures

 Control structures are for controlling the
“program flow”. With these structures you
can selectively execute program code based
on some criteria or use the same code more
than one time.

 Selective execution
 If ... then ... else

 Loops
 for
 while
 do

If/then/else
 Syntax (formal)

 if (boolean expression) statement(s)
 if (boolean expression) statement(s) else statement(s)

 Example in Java
{

int i = 3;
int j = 4;
if (i < j) {

System.out.println (“i is less than j!”);
}
else {

System.out.println (“i is more than or equal to j!”);
}

}

Loops
 Repeating and reusing directives in program

 for (initialization ; termination ; increment) statement(s)

 while (boolean expression) statement(s)

 do statement(s) while (expression)

for (int i = 0; i < 5; i++) {

System.out.println(“i = “ + i);

}

int i = 0;

while (i < 5) {

System.out.println(“i = “ + i);

i++;

}

int i = 0;

do {
System.out.println(“i = “ + i);

i++;

} while (i < 5);

Summation Calculator
/* This calculates the summation of a given integer
 * result = 1 + 2 + 3 + ... + number
 * = n * (n+1) * 0.5 (Gauss sum)
 */

class SumClass {
 public static void main(String [] args) {
 // at first we declare some variables
 int number = 5; // the input number
 int i = 1; // "running" variable
 int result = 0; // the output

 while (i <= number) {
result = result + i;
i++;

 }
 System.out.println("The gauss summation of " +

 number + " is " + result);
 }
}

About classes and objects

 Understand classes as an prototype
abstraction of a real world thing

 Classes defines behavior and capabilities
common to all objects of a certain kind

 The concept of classes are pure virtual!
Like a blueprint or schematic diagram

 An object is a instance of a class
 Realization (or building) of an arcticle

based on a blueprint
 Objects have capabilities (defined in class)

and a state

Example: A Car
 The idea:

 A vehicle for moving fast, comfortable, ...
 Usable for transport, traveling, ...
 Nice “looking”

 After 150 years of invention:

Example: A (virtual) Car

 The schematic design determines:
 Properties (transport capacity, design, velocity, ...)
 Behavioral Possibilities (Oil temperature display,

headlight on/off, breaks, ...)

 But what is not determined?
 Color
 Cargo
 Configuration
 ...

Example: A (real) Car

Now build a “real” car from blueprint

Example: A (real) Car

 The “real” car:
 Has all capabilities and behaviors from scheme
 Additional states:

 Characteristics (persistent state):
(color, configuration of seats, roof, etc.)

 Transient state:
(fuel, water, clean/dirty, broken, in use, lights on/off, ...)

 From a users point of view
 The car only “shows” its “user-interface” (steering wheel,

lamps, knobs, buttons, ...) other functions are hidden!
 The internal function of a car is mostly unknown to the driver

(opaque design, encapsulation)

OOP
 Back to classes and objects:

 A class can be understood as abstract view of an
article/thing (a blueprint or schematic diagram)
In IT: a module of a computer program that has a
specific, separated functionality

 An object is the article/thing itself built on the ba-
sis of a class.
For every object a corresponding class exists!
But you can have/create any number of objects
from a given class

 An object is also called an instance of a class

Classes in Java

 Keyword: class
 Behavior and capabilities are expressed by

variables and methods

class Name {
 // declare variables

 // Constructor(s), for object creation

 // Method(s)

}

public class Calculator {

 private int result;

 Calculator ()
{

result = 0;
}

 public int sum(int a, int b)
{
 result = a + b;

 return(result);
}

}

Classes in Java

 Variables
 <modifiers> datatyp name
 public String myname;

 Methods
 <modifiers> datatyp name (Argumentlist)
 private int getResult(int arg1, double arg2);
 Contains statements and variables
 Like a mathematical function
 More than one method with the same name is possible,

when using different argumentlist
 Variables defined inside and noted in arguments are only

locally available and usable

Modifiers

 static
 Methods: Method can be called without creating

an instance (object) of the class [-> main-method]
 Variables: Variable can be used without initializa-

tion and contains the same value in all objects

 private, protected, public
 Access rules for methods, variables and classes

Specialized methods

 main
 always a static method
 the beginning of the program

 Constructor
 creates (constructes) objects from classes
 no return value (returns an object)
 Call with the new operator

FactorialEnhanced facCalculator = new FactorialEnhanced(number);

Remember the syntax for arrays?

Conventions

 Classes have the same name as file
 Class-names begin with an uppercase letter
 Method-names begin with a lowercase letter
 Variable-names begin with a lowercase letter
 Constructors always use the same name as

the class

 Use comments and indentation!!!

Homework
 Calculate the faculty (n!) of a number given

on command line

 Extend your program that it creates an in-
stance of a class and uses it

/* Code Example */
public class MyFacultyCalc {

// ...
public static void main (String[] args) {

MyFacultyCalc mfc = new MyFacultyCalc();
// ...

}
}

> java MyFacultyCalc 10
3628800
>

